UNE 36750-1:2008

TOLERANCES

Business group composed of:

DIMENSIONAL TOLERANCES OF THE PIECES

With respect to the nominal dimensions, the measurement differences should not exceed the following tolerances:

-Lenght of the piece (X):

For lengths of X \leq 2,000 mm, the maximum tolerance, x_{max} , must be between 0 mm and 4 mm. For lengths of X > 2,000 mm, the maximum x_{max} , should be between 0 mm and 0.002 X.

-Width of the piece (Y):

For lengths of Y \leq 1,000 mm, the maximum tolerance, y_{max} , should be between 0 mm and 7 mm. For lengths of Y > 1,000 mm, the maximum tolerance, y_{max} , should be between 0 mm and 0.003 Y.

-Diagonals of the piece (D1; D2):

For lengths of $X \le 2,000$ mm, the maximum tolerance of the diagonal, $d_{máx}$, should be $d_{máx} = D1 - D2 = \pm 10$ mm. For lengths of X > 2,000 mm, the maximum diagonal tolerance, $d_{máx}$, should be $d_{máx} = D1 - D2 = 0.005$ X.

Figure 1 - Diagonals of thepiece (D1; D2)

-Space between bearing bars (A):

The maximum tolerance for the space between bearing bars, a_{max} , is given by:

For 10 spaces (10 A), $a_{max} = \pm 4$ mm. For 1 space, $a_{max} = \pm 1,5$ mm.

Figure 2 - Space between load bearing bars (A)

-Space between separating transversal bars (B):

The maximum tolerance for the space between separating transversal bars, $b_{\text{máx}}$, is given by:

For 10 spaces (10 B), $b_{max} = \pm 4$ mm. For 1 space, $b_{max} = \pm 2$ mm.

Figure 3 - Space between separating transversal bars(B)

-Length of rectilinear pieces (S):

The maximum tolerance of the length of a rectilinear piece, s_{max} , should be +10 mm.

Figure 4 - Length of the rectilinear piece (S)

-Width of a rectilinearpiece (T):

The maximum tolerance of the width of a rectilinear piece, $t_{\mbox{\tiny máx}}$ should be +10 mm.

Figure 5 - Width of a rectilinear piece (T)

LIDECOR - RELESA - GALVAME

-Radius of a piece with a circular shape (R1; R2):

The tolerances r of the radius R_1 and R_2 of the piece with a circular shape, shown in figure 13, should be respectively:

r₁ = -8 mm. r₂ = +8 mm.

Figure 6 - Radius of a circular piece (R1; R2)

-Tolerances for the making of pieces:

The construction of pieces may present differences with respect to the nominal measurement which should be between the tolerance limits shown below:

- Protruding between separating transversal rods in electrowelded gratings (q; k):

The maximum tolerance of the projection between the separating transversal bars and the bearing bars, q_{max} , equals 80% of the height of the separating rods.

The maximum tolerance between separating transversal bars with respect to the bearing bars, k_{max}, equals 1.5 mm.

- Protruding between separating transversalbars in pressed gratings (q; k):

The maximum tolerance of the projection between the separating transversal bars and the load bearing bars, q_{max} , equals 1,5 mm.

The maximum tolerance of the projection between separating transversal bars with respect to the bearing bars, k_{max} , equals 1.5 mm.

Key: 1 - Electrowelded grating 2 - Pressed grating

Figure 7 – Projection from the separating transversal bars (q; k)

- Protruding from the binding bar (m; n):

The maximum tolerance of the projection between the binding bar and the bearing bars in the upper part of the piece, m_{max} , is equal to 1.5 mm.

The maximum tolerance of the projection between the binding bar and the bearing bars in the lower part of the piece, n_{max} , is equal to 1.5 mm.

Key: 1 - Electrowelded grating 2 - Pressed grating

- Inclination of the load bearingbars (g):

The maximum tolerance of the slope of the bearing bars, g_{max}, should not exceed the greater of the following conditions:

2

g_{máx} = 0,1 h

 g_{max} = thickness of the bearing bar.

g_{máx} = tolerance of the projection between the binding bar and the bearing bar in the lower part of the piece.

Key: 1 - Electrowelded grating 2 - Pressed grating h - Height of the bearing bar

Figure 9 - Inclination of the bearing bars (g)

-Inclination of the binding bar (i):

The maximum tolerance of the inclination of the binding bar, i_{máx}, should not be greater than the following conditions:

 $i_{max} = 0,1 \ h \\ i_{max} = thickness of the binding bar. \\ i_{max} = 1,5 \ mm$

Imax – 1,5 IIIII

Figure 10 - Inclination of the binding bar (i)

-Intersection of separating transversal bars (z):

The maximum tolerance of separating transversal bars with respect to the bearing bars, z_{max} , is equal to a 0.003 Y.

Key: Y - Width of the piece

Intersection of the separating bars (z)

-Curvature of separatingtransversal bars (w):

The maximum tolerance of the curvature of the separating transversal bars, w_{max} , is equal to 0.004 Y

Key: Y - Width of the piece

Business group composed of

GRUPO RELESA COMPREHENSIVE SERVICE FOR METAL GRATING

-Longitudinal plane (e):

-Transversal plane (p):

c) concave piece: $p_{máx}$ = Y/200 mm d) convexpiece: $p_{máx}$ = Y/150 mm

c)

c)

The maximum tolerance in the longitudinal plane $e_{\mbox{\tiny máx}}$, should be:

The maximum tolerance of the transversal plane, p_{máx}, should be:

a) concave piece: $e_{máx} = X/200 \text{ mm}$

b) convexpiece: e_{máx} = X/150 mm

1

2

Key:

1 - Electrowelded grating

Key: 1 - Electrowelded grating 2 - Pressed grating x - Width of the piece

2 - Pressed grating x - Length of the piece

Figure 14 - Transversal plane (p)

Υ

d)

Y d)

Figure 13 - Longitudinal plane (e)

-Curvature of the bearing bars (c):

The maximum tolerance of the curvature of bearing bars, c_{max} , is equal to 1/200 X.

Figure 15 - Curvature of the bearing bars (c)

Torsion:

The tolerance of the curvature of the diagonals sv_{max} , is equal to D/150mm, with D being the diagonal of the piece.

COMPREHENSIVE SERVICE FOR METAL GRATINGS

Grupo Empresarial Relesa S.L. CIF B30779052

Ctra. Fuente Álamo - Las Palas Km. 3,5 30320 Fuente Álamo, Murcia (Spain)

T +34 968 597 536 F +34 968 598 304

info@gruporelesa.com gruporelesa.com